1. HyCyte®大鼠骨髓间充质干细胞三系分化试剂盒:影响因子18.9 Sun J, Yang F, Wang L, et al. Delivery of coenzyme Q10 loaded micelle targets mitochondrial ROS and enhances efficiency of mesenchymal stem cell therapy in intervertebral disc degeneration[J]. Bioactive Materials, 2023, 23: 247-260. 2. HyCyte®SD大鼠脂肪间充质干细胞:影响因子18.9 Ning X, Liu N, Sun T, et al. Promotion of adipose stem cell transplantation using GelMA hydrogel reinforced by PLCL/ADM short nanofibers[J]. Biomedical Materials, 2023, 18(6): 065003. 3. HyCyte®SD大鼠脂肪间充质干细胞三系分化试剂盒:影响因子18.9 Wei X, Wang L, Duan C, et al. Cardiac patches made of brown adipose-derived stem cell sheets and conductive electrospun nanofibers restore infarcted heart for ischemic myocardial infarction[J]. Bioactive Materials, 2023, 27: 271-287. 4. HyCyte®干细胞细胞产品:影响因子为18.9 Ma C, Qi X, Wei Y F, et al. Amelioration of ligamentum flavum hypertrophy using umbilical cord mesenchymal stromal cell-derived extracellular vesicles[J]. Bioactive materials, 2023, 19: 139-154. 5. HyCyte®干细胞细胞成软骨分化培养基:影响因子为16.6 Yang Y, Zhao X, Wang S, et al. Ultra-durable cell-free bioactive hydrogel with fast shape memory and on-demand drug release for cartilage regeneration[J]. Nature Communications, 2023, 14(1): 7771. 6. HyCyte®细胞产品(U-2OS cell):影响因子为16 Gao Y, Zhu Y, Wang H, et al. Lipid-mediated phase separation of AGO proteins on the ER controls nascent-peptide ubiquitination[J]. Molecular Cell, 2022, 82(7): 1313-1328. e8. 7. HyCyte®干细胞三系诱导分化产品:影响因子为12.4 Sun Y, Liu Q, Qin Y, et al. Exosomes derived from CD271+ CD56+ bone marrow mesenchymal stem cell subpopoulation identified by single-cell RNA sequencing promote axon regeneration after spinal cord injury[J]. Theranostics, 2024, 14(2): 510. 8. HyCyte®细胞产品(L929,NIH3T3):影响因子为11.2 Teng J, Zhao W, Zhang S, et al. Injectable nanoparticle-crosslinked xyloglucan/ε-poly-l-lysine composite hydrogel with hemostatic, antimicrobial, and angiogenic properties for infected wound healing[J]. Carbohydrate Polymers, 2024: 122102. 9. HyCyte®干细胞三系诱导分化产品:影响因子为10.8 Sun Y, Zhao J, Liu Q, et al. Intranasal delivery of small extracellular vesicles from specific subpopulation of mesenchymal stem cells mitigates traumatic spinal cord injury[J]. Journal of Controlled Release, 2024, 369: 335-350. 10. HyCyte®干细胞三系诱导分化产品:影响因子为10.2 Lv Q, Wang Y, Tian W, et al. Exosomal miR-146a-5p derived from human umbilical cord mesenchymal stem cells can alleviate antiphospholipid antibody-induced trophoblast injury and placental dysfunction by regulating the TRAF6/NF-κB axis[J]. Journal of Nanobiotechnology, 2023, 21(1): 419. 11. HyCyte®成骨诱导液产品:影响因子10.2 Chen Y, Wu Y, Guo L, et al. Exosomal Lnc NEAT1 from endothelial cells promote bone regeneration by regulating macrophage polarization via DDX3X/NLRP3 axis[J]. Journal of Nanobiotechnology, 2023, 21(1): 98. 12. HyCyte®细胞产品(HUVEC):影响因子为9.8 Gao R, Jiang Z, Wu X, et al. Metabolic regulation of tumor cells exposed to different oxygenated polycyclic aromatic hydrocarbons[J]. Science of The Total Environment, 2024, 907: 167833. 13. HyCyte®双抗(青霉素/链霉素GUSA-R002):影响因子9 Zhou M, He J, Li Y, et al. N6-methyladenosine modification of REG1α facilitates colorectal cancer progression via β-catenin/MYC/LDHA axis mediated glycolytic reprogramming[J]. Cell Death & Disease, 2023, 14(8): 557. 14. HyCyte®HEK-293T细胞株:影响因子9 Zhang H, Zhao Y, Wang J, et al. FBXO7, a tumor suppressor in endometrial carcinoma, suppresses INF2-associated mitochondrial division[J]. Cell Death & Disease, 2023, 14(6): 368. 15. HyCyte®HT22细胞株:影响因子8.8 Liu N, Cui X, Yan W, et al. Baicalein: a potential GLP-1R agonist improves cognitive disorder of diabetes through mitophagy enhancement[J]. Journal of Pharmaceutical Analysis, 2024: 100968. 16. HyCyte®U-2 OS细胞株:影响因子8.8 Wang W, Yang N, Wang L, et al. The TET-Sall4-BMP regulatory axis controls craniofacial cartilage development[J]. Cell Reports, 2024, 43(3). 17. HyCyte®细胞试剂产品:影响因子8.8 Lu J, Wang R, Feng X, et al. Composite starch films as green adsorbents for removing benzo [a] pyrene from smoked sausages[J]. Food Chemistry, 2024, 441: 138297. 18. HyCyte®NK-92MI细胞株:影响因子8.4 Liu X, Wang Y, Ye B, et al. Catalyst-free thiazolidine formation chemistry enables the facile construction of peptide/protein–cell conjugates (PCCs) at physiological pH[J]. Chemical Science, 2023, 14(26): 7334-7345. 19. HyCyte®A549细胞株:影响因子8.4 Wang L L, Xu Q, Xie Y Z, et al. A triple-targeting fluorescent probe reveals the glutathione and viscosity crosstalk in mitochondria, endoplasmic reticulum, and nucleoli in cells during ferroptosis[J]. Sensors and Actuators B: Chemical, 2024, 399: 134872. 20. HyCyte®THP-1细胞株:影响因子8.2 Jiang F, Wu G, Yang H, et al. Diethylaminoethyl-dextran and monocyte cell membrane coated 1, 8-cineole delivery system for intracellular delivery and synergistic treatment of atherosclerosis[J]. International Journal of Biological Macromolecules, 2023, 253: 127365. 21. HyCyte®RAW 264.7细胞株:影响因子8.2 Li F, Liu T, Liu X, et al. Ganoderma lucidum polysaccharide hydrogel accelerates diabetic wound healing by regulating macrophage polarization[J]. International Journal of Biological Macromolecules, 2024, 260: 129682. 22. HyCyte®细胞系产品:影响因子8 Qi G, Shi G, Wang S, et al. A Novel pH-Responsive Iron Oxide Core-Shell Magnetic Mesoporous Silica Nanoparticle (M-MSN) System Encapsulating Doxorubicin (DOX) and Glucose Oxidase (Gox) for Pancreatic Cancer Treatment[J]. International Journal of Nanomedicine, 2023: 7133-7147. 23. HyCyte®细胞株产品(HEK-293T,Jurkat):影响因子8 Yu Z, Wu X, Zhu J, et al. BCLAF1 binds SPOP to stabilize PD-L1 and promotes the development and immune escape of hepatocellular carcinoma[J]. Cellular and Molecular Life Sciences, 2024, 81(1): 82. 24. HyCyte®细胞株产品( THP-1,HCT116 ,Sw620, RAW264.7):影响因子7.9 Che N, Li M, Liu X, et al. Macelignan prevents colorectal cancer metastasis by inhibiting M2 macrophage polarization[J]. Phytomedicine, 2024, 122: 155144. 25. HyCyte®小鼠骨髓间充质干细胞成骨诱导分化培养基:影响因子7.9 Yang J, Zhang M, Luo Y, et al. Protopine ameliorates OVA-induced asthma through modulatingTLR4/MyD88/NF-κB pathway and NLRP3 inflammasome-mediated pyroptosis[J]. Phytomedicine, 2024: 155410. 26. HyCyte®干细胞三系诱导分化产品:影响因子为7.6 Li Z, Liu L, Yang Y, et al. Metformin Ameliorates Senescence of Adipose-Derived Mesenchymal Stem Cells and Attenuates Osteoarthritis Progression via the AMPK-Dependent Autophagy Pathway[J]. Oxidative Medicine and Cellular Longevity, 2022, 2022. 27. HyCyte®人脂肪干细胞完全培养基:影响因子7.5 Luan X, Chen P, Li Y, et al. TNF-α/IL-1β-licensed hADSCs alleviate cholestatic liver injury and fibrosis in mice via COX-2/PGE2 pathway[J]. Stem Cell Research & Therapy, 2023, 14(1): 100. 28. HyCyte®AML12细胞与细胞完全培养基:影响因子7.3 Gao J, Wang A, Bu X, et al. Acute murine cytomegalovirus infection boosts cell-type specific response and lipid metabolism changes in the liver of infant mice[J]. Frontiers in Immunology, 2023, 14: 1169869. 29. HyCyte®NK-92细胞与细胞完全培养基:影响因子7.3 Zuo P, Li Y, He C, et al. Anti-tumor efficacy of anti-GD2 CAR NK-92 cells in diffuse intrinsic pontine gliomas[J]. Frontiers in immunology, 2023, 14: 1145706. 30. HyCyte®Nthy-ori3–1细胞株:影响因子6.8 Zhang X, Zhang Y, Feng X, et al. The role of estrogen receptors (ERs)-Notch pathway in thyroid toxicity induced by Di-2-ethylhexyl phthalate (DEHP) exposure: Population data and in vitro studies[J]. Ecotoxicology and Environmental Safety, 2024, 269: 115727. 31. HyCyte®人骨髓间充质干细胞/干细胞完全培养基:影响因子6 Peng H, Zhang Y, Ren Z, et al. Cartilaginous Metabolomics Reveals the Biochemical-Niche Fate Control of Bone Marrow-Derived Stem Cells[J]. Cells, 2022, 11(19): 2951. 32. HyCyte®HEK293T细胞株:影响因子6 Li P, Xi Y, Zhang Y, et al. GLA Mutations Suppress Autophagy and Stimulate Lysosome Generation in Fabry Disease[J]. Cells, 2024, 13(5): 437. 33. HyCyte®人骨髓成脂诱导培养基:影响因子5.8 Yao S, Zhou Z, Wang L, et al. Targeting endometrial inflammation in intrauterine adhesion ameliorates endometrial fibrosis by priming MSCs to secrete C1INH[J]. Iscience, 2023, 26(7): 107201. 34. HyCyte®细胞株产品(5637,THP-1):影响因子5.8 Qi D, Lu Y, Qu H, et al. Independent prognostic value of CLDN6 in bladder cancer based on M2 macrophages related signature[J]. Iscience, 2024. 35. HyCyte®4T1细胞株:影响因子5.8 Zhao H Y, Li K H, Wang D D, et al. A mitochondria-targeting dihydroartemisinin derivative as a reactive oxygen species-based immunogenic cell death inducer[J]. Iscience, 2024, 27(1). 36. HyCyte®HK-2细胞株:影响因子5.8 Feng W, Zhu N, Xia Y, et al. Melanin-like nanoparticles alleviate ischemia-reperfusion injury in the kidney by scavenging reactive oxygen species and suppressing ferroptosis[J]. iScience, 2024. 37. HyCyte®细胞株产品(HaCaT,A-375,A-875,SK-MEL-1):影响因子5.7 Zhao Y, Wei Y, Fan L, et al. Leveraging a disulfidptosis-related signature to predict the prognosis and immunotherapy effectiveness of cutaneous melanoma based on machine learning[J]. Molecular Medicine, 2023, 29(1): 145. 38. HyCyte®干细胞成软骨和成脂诱导试剂盒:影响因子为5.6 Zhou J, Sui M, Ji F, et al. Hsa_circ_0036872 has an important promotional effect in enhancing osteogenesis of dental pulp stem cells by regulating the miR-143-3p/IGF2 axis[J]. International Immunopharmacology, 2024, 130: 111744. 39. HyCyte®RAW264.7细胞株:影响因子5.6 He S, Yan J, Chen L, et al. Structure and in vitro antioxidant and immunomodulatory activity of a glucan from the leaves of Cyclocarya paliurus[J]. Journal of Functional Foods, 2024, 113: 106016. 40. HyCyte®HL-1细胞株:影响因子5.6 Zhao Z, Jiang S, Fan Q, et al. Apocynum venetum leaf extract alleviated doxorubicin-induced cardiotoxicity by regulating organic acid metabolism in gut microbiota[J]. Frontiers in Pharmacology, 2023, 14: 1286210. 41. HyCyte®C2C12细胞株:影响因子5.6 Chen Z, Li J, Bai Y, et al. Unlocking the Transcriptional Control of NCAPG in Bovine Myoblasts: CREB1 and MYOD1 as Key Players[J]. International Journal of Molecular Sciences, 2024, 25(5): 2506. 42. HyCyte®人脂肪间充质干细胞:影响因子5.4 Duan J, Li Z, Liu E, et al. BSHXF-medicated serum combined with ADSCs regulates the TGF-β1/Smad pathway to repair oxidatively damaged NPCs and its component analysis[J]. Journal of Ethnopharmacology, 2023: 116692. 43. HyCyte®NK-92 MI细胞株:影响因子5.2 Liu F, Sang Y, Zheng Y, et al. circRNF10 regulates tumorigenic properties and natural killer cell-mediated cytotoxicity against breast cancer through the miR-934/PTEN/PI3k-Akt Axis[J]. Cancers, 2022, 14(23): 5862. 44. HyCyte®RAW264.7细胞株:影响因子5.2 Chen J, Lv Y, Shang W, et al. Loaded delta-hemolysin shapes the properties of Staphylococcus aureus membrane vesicles[J]. Frontiers in Microbiology, 2023, 14: 1254367. 45. HyCyte®PC细胞株:影响因子5.2 Hu H, He B, He M, et al. A glycosylation-related signature predicts survival in pancreatic cancer[J]. Aging (Albany NY), 2023, 15(23): 13710. 46. HyCyte®BV2细胞株:影响因子5 Duan W L, Ma Y P, Wang X J, et al. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis[J]. European Journal of Pharmacology, 2024: 176553. 47. HyCyte®细胞株产品(A549, U87MG):影响因子4.9 Zhang Y, Wang Y, Chen Y, et al. PET Imaging of Peptide Probe Al [18F] F-NOTA-PCP1 for Monitoring the Engagement of PD-L1 Antibodies in Tumors[J]. Molecular Pharmaceutics, 2024. 48. HyCyte®人B淋巴细胞(GM12878):影响因子4.8 Liu C, Zhao X, Wang Z, et al. LncRNA CHROMR/miR-27b-3p/MET axis promotes the proliferation, invasion and contributes to rituximab resistance in diffuse large B-cell lymphoma[J]. Journal of Biological Chemistry, 2024: 105762. 49. HyCyte®人脐带人间充质干细胞:影响因子4.8 Pu Y, Li C, Qi X, et al. Extracellular vesicles from NMN preconditioned mesenchymal stem cells ameliorated myocardial infarction via miR-210-3p promoted angiogenesis[J]. Stem Cell Reviews and Reports, 2023, 19(4): 1051-1066. 50. HyCyte®THP-1细胞株:影响因子4.7 Wang Y, Mao J, Wang Y, et al. Multifunctional Exosomes Derived from M2 Macrophages with Enhanced Odontogenesis, Neurogenesis and Angiogenesis for Regenerative Endodontic Therapy: An In Vitro and In Vivo Investigation[J]. Biomedicines, 2024, 12(2): 441. 51. HyCyte®C57BL/6小鼠骨髓间充质干细胞与完全培养基:影响因子4.6 Liu P, Xie X, Wu H, et al. Conditioned medium of mesenchymal stem cells pretreated with H2O2 promotes intestinal mucosal repair in acute experimental colitis[J]. Scientific Reports, 2022, 12(1): 20772. 52. HyCyte®RAW264.7细胞株:影响因子4.6 Yang Y, Tang X, Yao T, et al. Metformin protects ovarian granulosa cells in chemotherapy-induced premature ovarian failure mice through AMPK/PPAR-γ/SIRT1 pathway[J]. Scientific Reports, 2024, 14(1): 1447. 53. HyCyte®人骨髓间充质干细胞:影响因子4.6 Feng Z, Su X, Wang T, et al. Identification of biomarkers that modulate osteogenic differentiation in mesenchymal stem cells related to inflammation and immunity: A bioinformatics-based comprehensive study[J]. Pharmaceuticals, 2022, 15(9): 1094. 54. HyCyte®HK-2 细胞株:影响因子4.5 Peng L, Wang C, Yu S, et al. Dysregulated lipid metabolism is associated with kidney allograft fibrosis[J]. Lipids in Health and Disease, 2024, 23(1): 37. 55. HyCyte®HepG2细胞株:影响因子4.5 Guan H, Zhong M, Ma K, et al. The Comprehensive Role of High Mobility Group Box 1 (HMGB1) Protein in Different Tumors: A Pan-Cancer Analysis[J]. Journal of Inflammation Research, 2023: 617-637. 56. HyCyte®成人骨髓间充质干细胞完全培养基:影响因子4.3 Shen F, Xiao H, Shi Q. Mesenchymal stem cells derived from the fibrotic tissue of atrophic nonunion or the bone marrow of iliac crest: A donor-matched comparison[J]. Regenerative Therapy, 2023, 24: 398-406. 57. HyCyte®Nthy-ori 3-1细胞株:影响因子4.3 Li X, Qian H, Ye H, et al. DEHP induces apoptosis and autophagy of the thyroid via Rap1 signaling pathway: In vivo and in vitro study[J]. Food and Chemical Toxicology, 2024: 114609. 58. HyCyte®MLE-12细胞株:影响因子4 Li Y, Xu H L, Kang X W, et al. MiR-2113 overexpression attenuates sepsis-induced acute pulmonary dysfunction, inflammation and fibrosis by inhibition of HMGB1[J]. Heliyon, 2024, 10(2). 59. HyCyte® U251细胞株:影响因子4 Li J, Wei Y, Liu J, et al. Integrative analysis of metabolism subtypes and identification of prognostic metabolism-related genes for glioblastoma[J]. Bioscience Reports, 2024, 44(3): BSR20231400. 60. HyCyte® 人牙髓干细胞成骨分化试剂盒:影响因子3.9 Ning J, Zhang L, Xie H, et al. Decoding the multifaceted signatures and transcriptomic characteristics of stem cells derived from apical papilla and dental pulp of human supernumerary teeth[J]. Cell Biology International, 2023, 47(12): 1976-1986. 61. HyCyte® HEK293细胞株:影响因子3.7 Duan Y, Yu C, Kuang W, et al. Mesenchymal stem cell exosomes inhibit nucleus pulposus cell apoptosis via the miR-125b-5p/TRAF6/NF-κB pathway axis: Exosomes attenuate disc degeneration through the miR-125b/TRAF6/NF-κB axis[J]. Acta Biochimica et Biophysica Sinica, 2023, 55(12): 1938. 62. HyCyte® h9C2细胞株:影响因子3.7 Yan Z, Liu Y, Yang B, et al. Endoplasmic reticulum stress caused by traumatic injury promotes cardiomyocyte apoptosis through acetylation modification of GRP78: GRP78 acetylation modification and cardiomyocyte apoptosis[J]. Acta Biochimica et Biophysica Sinica, 2024, 56(1): 96. 63. HyCyte®Caco-2细胞株:影响因子3.7 Zhou Q, Rao F, Chen Z, et al. The cwp66 gene affects cell adhesion, stress tolerance, and antibiotic resistance in Clostridioides difficile[J]. Microbiology Spectrum, 2022, 10(2): e02704-21. 64. HyCyte®细胞株产品(SH-SY5Y,SK-N-AS):影响因子3.6 Mengzhen Z, Xinwei H, Zeheng T, et al. Integrated machine learning-driven disulfidptosis profiling: CYFIP1 and EMILIN1 as therapeutic nodes in neuroblastoma[J]. Journal of Cancer Research and Clinical Oncology, 2024, 150(3): 109. 65. HyCyte®人脐静脉内皮细胞HUVEC:影响因子3.6 Su J, Cheng J, Hu Y, et al. Transfer RNA-derived small RNAs and their potential roles in the therapeutic heterogeneity of sacubitril/valsartan in heart failure patients after acute myocardial infarction[J]. Frontiers in Cardiovascular Medicine, 2022, 9: 961700. 66. HyCyte®H9C2细胞株:影响因子3.3 Mu F, Zhao J, Zhao M, et al. Styrax (Liquidambar orientalis Mill.) promotes mitochondrial function and reduces cardiac damage following myocardial ischemic injury: the role of the AMPK-PGC1α signaling pathway[J]. Journal of Pharmacy and Pharmacology, 2023, 75(12): 1496-1508. 67. HyCyte®人肺微血管内皮细胞/血清/培养基:影响因子3.1 Chen X, Chen J, Liu S, et al. PECAM-1 mediates temsirolimus-induced increase in neutrophil transendothelial migration that leads to lung injury[J]. Biochemical and Biophysical Research Communications, 2023, 682: 180-186. 68. HyCyte®干细胞三系诱导试剂盒:影响因子3.1 Xia Y, Zhang Y, Sun Y, et al. CCDC127 regulates lipid droplet homeostasis by enhancing mitochondria-ER contacts[J]. Biochemical and Biophysical Research Communications, 2023, 683: 149116. 69. HyCyte®细胞A549 human LUAD:影响因子2.9 Li P, Ma G, Cui Z, et al. FOXM1 and CENPF are associated with a poor prognosis through promoting proliferation and migration in lung adenocarcinoma[J]. Oncology Letters, 2023, 26(6): 1-13. 70. HyCyte®Human medullary TC cell line细胞株:影响因子2.9 Chen Z, Zhong X, Tang W, et al. Intracellular FGF1 promotes invasion and migration in thyroid carcinoma via HMGA1 independent of FGF receptors[J]. Endocrine Connections, 2023, 1(aop). 71. HyCyte®MC3T3-E1成骨诱导分化培养基:影响因子2.7 Xie D, Xu Y, Cai W, et al. Icariin promotes osteogenic differentiation by upregulating alpha-enolase expression[J]. Biochemistry and Biophysics Reports, 2023, 34: 101471. 72. HyCyte®THP-1细胞株与细胞完全培养基:影响因子2.7 Du Y, Liu X, Xiao C, et al. TIPE2 regulates periodontal inflammation by inhibiting NF-κB p65 phosphorylation[J]. Journal of Applied Oral Science, 2023, 31: e20230162. 73. HyCyte®干细胞完全培养基与三系诱导试剂盒:影响因子2.6 Liu H, Li K, Guo B, et al. Engineering an injectable gellan gum-based hydrogel with osteogenesis and angiogenesis for bone regeneration[J]. Tissue and Cell, 2024, 86: 102279. 74. HyCyte®成骨诱导液产品:影响因子2.6 Dai H, Zhang H, Qiu Z, et al. Periosteum-derived Skeletal Stem Cells Encapsulated in Platelet-rich Plasma Enhance the Repair of Bone Defect[J]. Tissue and Cell, 2023: 102144. 75. HyCyte®SW480细胞株:影响因子2.1 Zhang H, Zhou J, Ye Y. Prediction and validation of circulating G-quadruplexes as a novel biomarker in colorectal cancer[J]. Journal of Gastrointestinal Oncology, 2024, 15(1): 286. 76. HyCyte®成脂诱导培养基:影响因子1.8 Wang Z H, Peng J H, Liu Y C, et al. CCNB1 may as a biomarker for the adipogenic differentiation of adipose-derived stem cells in the postoperative fat transplantation of breast cancer[J]. Gland Surgery, 2024, 13(1): 45. 77. HyCyte®成骨/成脂诱导分化培养基 Xu Y, Xun J, Li Z, et al. Identification and characterization of human skeletal stem cell-like cells derived from infrapatellar fat pad[J]. 2023. 78. HyCyte®大鼠骨髓间充质干细胞成骨诱导分化培养基 Wang X, Hao Y, Chen X, et al. Local exosomes and Hoxa11 status affect the healing fate during autogenous bone grafting at different sites[J]. 2023. 79. HyCyte®THP-1细胞株 Chen Y, Chen S, Liu Z, et al. Noncanonical NLRP3 Inflammasome Activation Elicits the Programmed Death of Red Blood Cells[J]. Available at SSRN 4626203. 80. HyCyte®细胞产品(C-33A, SiHa) Wu T, Wang W, Li Z, et al. Discovery of New Sesquiterpenoids And Jasmonic Acid Derivative From Artemisia Stolonifera And Their Anti-Inflammation Activity[J]. Available at SSRN 4691606. 81. HyCyte®人脐带间充质干细胞成骨/成脂诱导分化培养基 Zhang H, Zhu Q, Ji Y, et al. hucMSCs treatment prevents pulmonary fibrosis by reducing circANKRD42-YAP1-mediated mechanical stiffness[J]. Aging (Albany NY), 2023, 15(12): 5514. 82. HyCyte®大鼠骨髓间充质干细胞成骨分化试剂盒 Yao Z, Huang W, Yang Y, et al. Investigation of the Osteogenic Effects of ICA and ICSII on Rat Bone Marrow Mesenchymal Stem Cells[J]. 2024. 83. HyCyte®成脂诱导培养基 Guan C, **ao H, Chen Y, et al. Primary cilium of Prrx1+ cells mediate bone-tendon interface development by regulating cell biology[J]. 2023. 84. HyCyte®细胞产品(4T1):影响因子为18 Wang Z, Sha T, Li J, et al. Turning foes to friends: Advanced “in situ nanovaccine” with dual immunoregulation for enhanced immunotherapy of metastatic triple-negative breast cancer[J]. Bioactive Materials, 2024, 39: 612-629. 85. HyCyte®细胞产系:影响因子为13.7 Yu X, Feng M, Guo J, et al. MLKL promotes hepatocarcinogenesis through inhibition of AMPK-mediated autophagy[J]. Cell Death & Differentiation, 2024: 1-14. 86. 原代细胞-小鼠滑膜成纤维细胞(PSMC-C224):影响因子为10.6 Cao H, Li W, Zhang H, et al. Bio-nanoparticles loaded with synovial-derived exosomes ameliorate osteoarthritis progression by modifying the oxidative microenvironment[J]. Journal of Nanobiotechnology, 2024, 22(1): 271. 87. HyCyte®细胞产品(AML12):影响因子为9.1 Hong W, Zeng X, Wang H, et al. PGC-1α loss promotes mitochondrial protein lactylation in acetaminophen-induced liver injury via the LDHB-lactate axis[J]. Pharmacological Research, 2024: 107228. 88. HyCyte®细胞产系:影响因子为8.6 Wang Y, Zhang Y, Chen Y, et al. [18F] AlF-NOTA-PCP2: a novel PET/CT tracer for enhanced PD-L1 heterogeneity imaging and comparative analysis with [18F] AlF-NOTA-WL12 in glioblastoma xenografts[J]. European Journal of Nuclear Medicine and Molecular Imaging, 2024: 1-15. 89. HyCyte®细胞产品(HUVEC):影响因子为8.1 Wang Z, Zhao P, Tian K, et al. TMEM9 promotes lung adenocarcinoma progression via activating the MEK/ERK/STAT3 pathway to induce VEGF expression[J]. Cell Death & Disease, 2024, 15(4): 295. 90. HyCyte®细胞产品( HT-29,HCT-116):影响因子为6.2 Yu M, Li Q, Yu H. Characterization of cellular uptake, anti-colorectal cancer effects and pharmacokinetics of curcumin-loaded polypropylene/rice husk composites filled with nano-SiO2[J]. Alexandria Engineering Journal, 2024, 101: 118-124. 91. HyCyte®细胞产品(RAW264.7):影响因子为6.1 Geng R, Zhao Y, Xu W, et al. SIRPB1 regulates inflammatory factor expression in the glioma microenvironment via SYK: functional and bioinformatics insights[J]. Journal of Translational Medicine, 2024, 22(1): 338. 92. HyCyte®细胞产品(HUVEC):影响因子为5.9 Liu Q, Xie J, Zhou R, et al. A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury[J]. Neural Regeneration Research, 2025, 20(2): 503-517. 93. BMSC三系诱导分化试剂盒:影响因子为5.9 Tang X, Zheng N, Lin Q, et al. Hypoxia-preconditioned bone marrow–derived mesenchymal stem cells protect neurons from cardiac arrest–induced pyroptosis[J]. Neural Regeneration Research, 2025: 10.4103. 94. HyCyte®细胞产品(RAW264.7):影响因子为4.8 Chen T, Zhou X, Zhu M, et al. Phytochemical determination and mechanistic investigation of Polygala tenuifolia root (Yuanzhi) extract for bronchitis: UPLC-MS/MS analysis, network pharmacology and in vitro/in vivo evaluation[J]. Journal of Ethnopharmacology, 2024: 118418. 95. HyCyte®细胞产品(HCT116):影响因子为4.7 Wang Z, Sun Y, Wu M, et al. Hawthorn Proanthocyanidin Extract Inhibits Colorectal Carcinoma Metastasis by Targeting the Epithelial-Mesenchymal Transition Process and Wnt/β-Catenin Signaling Pathway[J]. Foods, 2024, 13(8): 1171. 96. 血清(FBP-C520),培养基PMI-1640,细胞系Nthy-ori 3-1 :影响因子为4.5 Xie Z, Jia Q, Wu S, et al. pH-responsive MTX-BSA@ MnO2-Cy5. 5 for NIRF/MR imaging guided chemotherapy of anaplastic thyroid carcinoma[J]. Journal of Drug Delivery Science and Technology, 2023, 88: 104960. 97. HyCyte®细胞产品(HT22):影响因子为4.4 Zhang Q, Li Y, Liu Y, et al. The cGAS/STING signaling pathway is involved in sevoflurane induced neuronal necroptosis via regulating microglia M1 polarization[J]. Cellular Signalling, 2024, 119: 111195. 98. HyCyte®细胞产品(Panc-02):影响因子为4.2 Kong D, Wu Y, Tong B, et al. CHES1 modulated tumorigenesis and senescence of pancreas cancer cells through repressing AKR1B10[J]. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease, 2024, 1870(6): 167214. 99. HyCyte®细胞产品(RAW264.7):影响因子为4.1 Chen G, Shen L, Hu H, et al. Sulforaphane Inhibits Oxidative Stress and May Exert Anti-Pyroptotic Effects by Modulating NRF2/NLRP3 Signaling Pathway in Mycobacterium tuberculosis-Infected Macrophages[J]. Microorganisms, 2024, 12(6): 1191. 100. HyCyte®细胞产品(LLC):影响因子为4 Guo Y N, He K R, Liang S S, et al. The effect and mechanism of volatile oil emulsion from leaves of Clausena lansium (Lour.) Skeels on Staphylococcus aureus in vitro[J]. Frontiers in Microbiology, 2024, 15: 1376819. 101. HyCyte®细胞产品(HTR-8/SVneo):影响因子为3.9 Lv J, He Q, Yan Z, et al. Inhibitory Impact of Prenatal Exposure to Nano-Polystyrene Particles on the MAP2K6/p38 MAPK Axis Inducing Embryonic Developmental Abnormalities in Mice[J]. Toxics, 2024, 12(5): 370. 102. 成骨诱导分化培养基, 茜素红溶液(GUDL-D101):影响因子为3.9 Chen J, Huang Y, Tang H, et al. A xenogeneic extracellular matrix-based 3D printing scaffold modified by ceria nanoparticles for craniomaxillofacial hard tissue regeneration via osteo-immunomodulation[J]. Biomedical Materials, 2024, 19(4): 045007. 103. HyCyte®细胞产品(HK-2):影响因子为3.9 Li X, Shi C, Zhou R, et al. Modified EBP‐bFGF targeting endogenous renal extracellular matrix protects against renal ischemia‐reperfusion injury in rats[J]. Journal of Biomedical Materials Research Part A, 2024. 104. HyCyte®细胞产品(HUVEC):影响因子为3.8 Shan Y, Xia Z, An M, et al. Construction and application of H1R ligand screening materials based on SMA stabilization and His-tag covalent immobilization of membrane proteins[J]. Journal of Chromatography A, 2024: 465057. 105. HyCyte®细胞产品(Huh-7, HCCLM3, and Hep 3B,WRL-68):影响因子为3.8 Yang K, Ma Y, Chen W, et al. CCDC58 is a potential biomarker for diagnosis, prognosis, immunity, and genomic heterogeneity in pan-cancer[J]. Scientific Reports, 2024, 14(1): 8575. 106. HyCyte®细胞产品(HaCaT):影响因子为3.4 Liu Z, Jin S, Cheng D, et al. Modified human skin cell isolation protocol and its influence on keratinocyte and melanocyte culture[J]. Regenerative Therapy, 2024, 26: 203-212. 107. HyCyte®细胞产品(A549):影响因子为3.4 Li J H, Wan H X, Wu L H, et al. Calcitonin gene‑related peptide alleviates hyperoxia‑induced human alveolar cell injury via the CGRPR/TRPV1/Ca2+ axis[J]. Molecular Medicine Reports, 2024, 30(1): 1-14. 108. 血清(FBP-C520),细胞系与培养基Nthyori 3–1,TPC-1 :影响因子为3.4 Gao X, Gao J, Sun Y, et al. The Common Pathogenesis of Nodular Goiter in Both Sexes: An Exploration into Gene Expression and Signaling Pathways[J]. Heliyon, 2024. 109. HyCyte®细胞产品(AML12):影响因子为3.1 Tao Y, Wang Y, Wang M, et al. Mesenchymal Stem Cells Alleviate Acute Liver Failure through Regulating Hepatocyte Apoptosis and Macrophage Polarization[J]. Journal of Clinical and Translational Hepatology, 2024, 12(6): 571-580.
110. 成脂、成骨和软骨分化培养基:影响因子为3 Wang Y, Lv Q, Li J, et al. The protective mechanism of human umbilical cord mesenchymal stem cell-derived exosomes against neutrophil extracellular trap-induced placental damage[J]. Placenta, 2024. 111. HyCyte®细胞产品(BCPAP、TPC-1、Nthy-ori 3-1、THP-1):影响因子为2.5 Huo R, Zhao R, Li Z, et al. APOE expression in papillary thyroid carcinoma: Influencing tumor progression and macrophage polarization[J]. Immunobiology, 2024: 152821. 112. BMSCs,BMSC培养基,成骨分化培养基:影响因子为2.4 Xin J, Wang Z, Shen Y, et al. S100 calcium‑binding protein A16 suppresses the osteogenic differentiation of rat bone marrow mesenchymal stem cells by inhibiting SMAD family member 4 signaling[J]. Experimental and Therapeutic Medicine, 2024, 27(6): 1-10. 113. 兔骨髓间充质干细胞成骨诱导分化培养基(BMRB-D101) Gui X, Song P, Zhang B, et al. Natural Loofah Sponge Inspired 3d Printed Bionic Scaffolds Promote Personalized Bone Defect Regeneration[J]. 114. HyCyte®细胞产品(RAW264.7、H9C2、HL-1、AC16) Li W, Peng Y, Liu J, et al. Discovery and Synthesis of Novel Glyrrhizin-Analogs Containing Furanoylpiperazine and the Activity Against Myocardial Injury in Sepsis[J]. Available at SSRN 4821740. 115. HyCyte®细胞产品(HepG2) Chen Z, Wang Z, Liu W, et al. A Reproducible Hybrid Membrane for in Situ Analysis of Cell Secretions with a Wide Size Range[J]. 116. HyCyte®细胞产品(LLC) Dong J, Qi Y, Fu C, et al. Impact of frequent whole-body CT scans during immune checkpoint inhibitor (ICI) therapy on antitumor immune efficacy[J]. 2024. 117. HyCyte®细胞产品(LLC) Dong J, Wang Z, Li M, et al. Frequent CT Scan Radiation Activates Interferon Responses and Antitumor T-Cell Immunity[J]. 2024. 118. HyCyte®细胞产品(Huh7,Hep3B) Yu C, Ma Y. Stigmasterol inhibits the progression of hepatocellular carcinoma by modulating the TLR4/MyD88/NF-κB signaling pathway[J]. 2024. 119. HyCyte®细胞产品(MCF-7):影响因子为6.7 Yafeng Wu, Qinglin Gu, Zhi Wang, Zhaoyan Tian, Hui Liu, and Songqin Liu Analytical Chemistry 2024 96 (29), 12112-12119. 120. HyCyte®细胞产品(MC3T3-E1,RAW264.7):影响因子为15.8 Yang X, Fan Y, Liang J, et al. Polyaptamer-Driven Crystallization of Alendronate for Synergistic Osteoporosis Treatment through Osteoclastic Inhibition and Osteogenic Promotion. ACS Nano. 2024;18(33):22431-22443. 121. HyCyte®细胞产品(MLE-12):影响因子为18.5 Lu Q, Chen R, Zeng F, et al. Inhalation of Bioorthogonal Gene‐Editable Spiky‐Pollen Reprograms Tumor‐Associated Macrophages for Lung Cancer Immunotherapy[J]. Advanced Functional Materials, 2024: 2408767. 122. HyCyte®RAW264.7细胞和专用培养基:影响因子为14.7 Tong F, Wang Y, Xu Y, Zhou Y, He S, Du Y, Yang W, Lei T, Song Y, Gong T, Gao H. MMP-2-triggered, mitochondria-targeted PROTAC-PDT therapy of breast cancer and brain metastases inhibition. Nat Commun. 2024 Nov 29;15(1):10382. 123. HyCyte®Caco-2细胞和专用培养基:影响因子为13 Jiang B, Peng C, Li X, Sun C, Lu W, Fang Y. Banana Starch Nanoparticles Disrupt the Integrity of the Intestinal Barrier by Opening Tight Junctions in Mice. Small. 2024 Dec 12:e2408298. 124. HyCyte®细胞产品(RAW264.7,Vero):影响因子为4.6 Jiang J, Zhang D, Liu W, Yang J, Yang F, Liu J, Hu K. Overexpression of NLRP12 enhances macrophage immune response and alleviates herpes simplex keratitis. Front Cell Infect Microbiol. 2024 Jul 25;14:1416105. 125. HyCyte®细胞产品(4T1):影响因子为10 Sun Y, Peng X, Guan Y, Su T, Xie Z, Wu Z, Long Y, Zhu H, Shao J, Mai X, Shi X, Wu T, Teng Z, Zhang B, Chen K, Xin X. K2FeO4-Enhanced Photodynamic Therapy of Breast Cancer via In Situ Synthesis of Fe2O3 and O2. Adv Healthc Mater. 2024 Nov 2:e2402827. 126. HyCyte®细胞产品(HEK293T、HK-2):影响因子为4.8 Jia K, Shi P, Zhang L, Yan X, Xu J, Liao K. Trans-cinnamic acid alleviates high-fat diet-induced renal injury via JNK/ERK/P38 MAPK pathway. J Nutr Biochem. 2025 Jan;135:109769. 127. HyCyte®RPMI-1640培养基:影响因子为7.7 Jia K, Shi P, Zhang L, Yan X, Xu J, Liao K. Trans-cinnamic acid alleviates high-fat diet-induced renal injury via JNK/ERK/P38 MAPK pathway. J Nutr Biochem. 2025 Jan;135:109769. 128. HyCyte®细胞产品(L-02):影响因子为5.2 Fang Z, Liu C, Cheng Y, Ji Y, Liu C. Combined analysis of bulk, single-cell RNA sequencing, and spatial transcriptomics reveals the expression patterns of lipid metabolism and ferroptosis in the immune microenvironment of metabolic-associated fatty liver disease. Life Sci. 2025 Feb 1;362:123377. 129. HyCyte®细胞产品(CT26):影响因子为15.8 Deng W, Wang Y, Wang J, Su Y, Li M, Qu K, Wang Y, Li M. Leveraging Vitamin C to Augment Nanoenabled Photothermal Immunotherapy. ACS Nano. 2025 Mar 26. doi: 10.1021/acsnano.4c17080. Epub ahead of print. PMID: 40138545. 130. SD大鼠骨髓间充质干细胞:影响因子为3.8 Yao Z, Huang W, Yang Y, Zou L, Zhang Y, Zhang J, Luo G. Investigation of the osteogenic effects of ICA and ICSII on rat bone marrow mesenchymal stem cells. Sci Rep. 2025 Jan 24;15(1):3060. 131. SD大鼠骨髓间充质干细胞:影响因子为2.7 Yao Z, Huang W, Jiang J, Zou L, Zhang Y, Zhang J, Luo G. Icariside II enhances crania defect repair through synergistic angiogenesis and osteogenesis. Tissue Cell. 2025 Mar 7;95:102833. 1. HyCyte®预筛选胎牛血清:影响因子为37.3 Zheng Z, Zeng X, Zhu Y, et al. CircPPAP2B controls metastasis of clear cell renal cell carcinoma via HNRNPC-dependent alternative splicing and targeting the miR-182-5p/CYP1B1 axis[J]. Molecular Cancer, 2024, 23(1): 4. 2. HyCyte®预筛选胎牛血清FBP-C520:影响因子为18.9 Li X, Liang X, Fu W, et al. Reversing cancer immunoediting phases with a tumor-activated and optically reinforced immunoscaffold[J]. Bioactive Materials, 2024, 35: 228-241. 3. HyCyte®预筛选胎牛血清:影响因子为5.7 Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in oral squamous cell carcinoma cancer‐associated fibroblasts contributes to tumor progression: Role of IL8/AKT/p‐ACLY axis[J]. Cancer Science, 2024. 4. HyCyte®预筛选胎牛血清与培养基:影响因子3.4 Zhao X, Zheng Z, Chen C, et al. New clerodane diterpenoids from Callicarpa pseudorubella and their antitumor proliferative activity[J]. Fitoterapia, 2024, 174: 105878. 5. HyCyte®预筛选胎牛血清 Liu P, Wang Y, Li X, et al. Enhanced lipid biosynthesis in OSCC cancer associated fibroblasts contributes to tumor progression: role of IL8/AKT/p-ACLY axis[J]. 2023. 6. HyCyte®预筛选胎牛血清FBP-C520:影响因子为4.5 Xie Z, Jia Q, Wu S, et al. pH-responsive MTX-BSA@ MnO2-Cy5. 5 for NIRF/MR imaging guided chemotherapy of anaplastic thyroid carcinoma[J]. Journal of Drug Delivery Science and Technology, 2023, 88: 104960. 7. HyCyte®预筛选胎牛血清FBP-C520:影响因子为3.4 Gao X, Gao J, Sun Y, et al. The Common Pathogenesis of Nodular Goiter in Both Sexes: An Exploration into Gene Expression and Signaling Pathways[J]. Heliyon, 2024. 8. HyCyte®预筛选胎牛血清:影响因子为15.8 Zeng X, Chen Z, Zhu Y, Liu L, Zhang Z, Xiao Y, Wang Q, Pang S, Zhao F, Xu B, Leng M, Liu X, Hu C, Zeng S, Li F, Xie W, Tan W, Zheng Z. O-GlcNAcylation regulation of RIPK1-dependent apoptosis dictates sensitivity to sunitinib in renal cell carcinoma. Drug Resist Updat. 2024 Sep 12;77:101150. 9. HyCyte®预筛选胎牛血清:影响因子为14.3 Hu C, Zheng Z, Pang S, Zhu Y, Jie J, Lai Z, Zeng X, Xiao Y, Chen Z, Zhao J, Du Y, Li F, Wang Q, Tan W. Chimeric SFT2D2-TBX19 Promotes Prostate Cancer Progression by Encoding TBX19-202 Protein and Stabilizing Mitochondrial ATP Synthase through ATP5F1A Phosphorylation. Adv Sci (Weinh). 2024 Nov 14:e2408426. doi: 10.1002/advs.202408426. Epub ahead of print. PMID: 39540264. 10. HyCyte®预筛选胎牛血清FBP-C520:影响因子为4.4 Li P, Wu Y, Deng Z, Samad A, Xi Y, Song J, Zhang Y, Li J, Zhou YA, Xiong Q, Wu C. Two novel SH3TC2 mutations predispose to Charcot-Marie-tooth disease type 4C by mistargeting away from TFRC. Cell Signal. 2025 Feb 15:111669. 1. Cas9X®基因敲除服务:影响因子为39.3 Ma B, Ju A, Zhang S, et al. Albumosomes formed by cytoplasmic pre-folding albumin maintain mitochondrial homeostasis and inhibit nonalcoholic fatty liver disease[J]. Signal Transduction and Targeted Therapy, 2023, 8(1): 229. 【ALB in HepG2 was knocked out by Haixing Biosciences using the CRISPR/Cas9 system】 2. Cas9X®基因编辑服务(突变菌的基因改造和筛选):影响因子为26.6 Wu W, Pu Y, Gao S, et al. Bacterial Metabolism-Initiated Nanocatalytic Tumor Immunotherapy[J]. Nano-Micro Letters, 2022, 14(1): 1-21. 3. Cas9X®基因敲除服务:影响因子为16.6 Bu J, Zhang Y, Wu S, et al. KK-LC-1 as a therapeutic target to eliminate ALDH+ stem cells in triple negative breast cancer[J]. Nature Communications, 2023, 14(1): 2602. 4. Cas9X®载体:影响因子为15.1 Chen X, Hao Y, Liu Y, et al. NAT10/ac4C/FOXP1 promotes malignant progression and facilitates immunosuppression by reprogramming glycolytic metabolism in cervical cancer[J]. Advanced Science, 2023, 10(32): 2302705. 5. Cas9X®基因敲除服务:影响因子为14.9 Cao X, Zheng J, Zhang R, et al. Live-cell imaging of human apurinic/apyrimidinic endonuclease 1 in the nucleus and nucleolus using a chaperone@ DNA probe[J]. Nucleic Acids Research, 2024: gkae202. 6. AV腺病毒 lncRNA LITTIP: 影响因子14.9 Li T, Wang H, Jiang Y, et al. LITTIP/Lgr6/HnRNPK complex regulates cementogenesis via Wnt signaling[J]. International Journal of Oral Science, 2023, 15(1): 33. 7. Cas9X®基因过表达服务:影响因子为14.5 Fan H, Jiang H, Yu Z, et al. Cisplatin-based miRNA delivery strategy inspired by the circCPNE1/miR-330-3p pathway for oral squamous cell carcinoma[J]. Acta Pharmaceutica Sinica B, 2024. 8. Cas9X®基因敲除服务:影响因子为12.8 Yang H H, Jiang H L, Tao J H, et al. Mitochondrial citrate accumulation drives alveolar epithelial cell necroptosis in lipopolysaccharide-induced acute lung injury[J]. Experimental & Molecular Medicine, 2022, 54(11): 2077-2091. 9. Cas9X®基因敲除服务:影响因子为12.478 Liu B, Hua D, Shen L, et al. NPC1 is required for postnatal islet β cell differentiation by maintaining mitochondria turnover[J]. Theranostics, 2024, 14(5): 2058. 10. 腺病毒包装:影响因子为11.4 Liu L, Wang L, Liu L, et al. Acyltransferase zinc finger DHHC-type containing 2 aggravates gastric carcinoma growth by targeting Nrf2 signaling: A mechanism-based multicombination bionic nano-drug therapy[J]. Redox Biology, 2024, 70: 103051. 11. 慢病毒包装:影响因子为10.2 Chen W, Li Z, Yu N, et al. Bone-targeting exosome nanoparticles activate Keap1/Nrf2/GPX4 signaling pathway to induce ferroptosis in osteosarcoma cells[J]. Journal of Nanobiotechnology, 2023, 21(1): 355. 12. 慢病毒过表达载体:影响因子为10.2 Peng W, Xie Y, Luo Z, et al. UTX deletion promotes M2 macrophage polarization by epigenetically regulating endothelial cell-macrophage crosstalk after spinal cord injury[J]. Journal of Nanobiotechnology, 2023, 21(1): 225. 13. shRNA质粒:影响因子为9.3 Li W, Ali T, Zheng C, et al. Fluoxetine regulates eEF2 activity (phosphorylation) via HDAC1 inhibitory mechanism in an LPS-induced mouse model of depression[J]. Journal of neuroinflammation, 2021, 18: 1-19. 14. Cas9X®基因敲除服务:影响因子为9.2 Zhong S, Guo Q, Chen X, et al. The inhibition of YTHDF3/m6A/LRP6 reprograms fatty acid metabolism and suppresses lymph node metastasis in cervical cancer[J]. International Journal of Biological Sciences, 2024, 20(3): 916. 15. CRISPR干扰服务:影响因子为7.9 Liu X, Yan C, Chang C, et al. Ochratoxin A promotes chronic enteritis and early colorectal cancer progression by targeting Rinck signaling[J]. Phytomedicine, 2024, 122: 155095. 16. Cas9X®基因敲除服务(敲除质粒/过表达质粒):影响因子为7.2 Dai J, Zhang L, Zhang R, et al. Hepatocyte Deubiquitinating Enzyme OTUD5 Deficiency Is a Key Aggravator for Metabolic Dysfunction-Associated Steatohepatitis by Disturbing Mitochondrial Homeostasis[J]. Cellular and Molecular Gastroenterology and Hepatology, 2024, 17(3): 399-421. 17. Cas9X®基因敲除服务:影响因子为5.8 Zhou T, Qian H, Zhang D, et al. PGRN inhibits CD8+ T cell recruitment and promotes breast cancer progression by up-regulating ICAM-1 on TAM[J]. Cancer Immunology, Immunotherapy, 2024, 73(5): 76. 18. Cas9X®基因敲除服务:影响因子为5.6 Xu B, Sui Q, Hu H, et al. SAMHD1 attenuates acute inflammation by maintaining mitochondrial function in macrophages via interaction with VDAC1[J]. International Journal of Molecular Sciences, 2023, 24(9): 7888. 19. Cas9X®基因敲除服务:影响因子为5.6 Zhong W J, Ma L, Yang F, et al. Matrine, a potential c-Myc inhibitor, suppresses ribosome biogenesis and nucleotide metabolism in myeloid leukemia[J]. Frontiers in Pharmacology, 2022, 13: 1027441. 20. 基因敲除试剂盒(CRISPR-Cas9x3.0):影响因子为5.1 Xiao P, Chen J, Zeng Q, et al. UNC5B Overexpression alleviates peripheral neuropathic pain by stimulating netrin-1-dependent autophagic flux in Schwann cells[J]. Molecular Neurobiology, 2022, 59(8): 5041-5055. 21. siRNA干扰:影响因子为4.7 Huo D, Liang W, Wang D, et al. Roflupram alleviates autophagy defects and reduces mutant hSOD1-induced motor neuron damage in cell and mouse models of amyotrophic lateral sclerosis[J]. Neuropharmacology, 2024, 247: 109812. 22. Cas9X®基因敲除服务:影响因子为4.7 Lu Y, Zhang M X, Pang W, et al. Transcription factor ZNF683 inhibits SIV/HIV replication through regulating IFNγ secretion of CD8+ T cells[J]. Viruses, 2022, 14(4): 719. 23. Cas9X®基因载体服务:影响因子为3.9 Kang J, Abudurufu M, Zhang S, et al. lncRNA VIM-AS1 acts as a prognostic biomarker and promotes apoptosis in lung adenocarcinoma[J]. Journal of Cancer, 2023, 14(8): 1417. 24. Cas9X®基因稳转服务:影响因子为3.4 Liang C, Zhou J, Wang Y, et al. Essential genes analysis reveals small ribosomal subunit protein eS28 may be a prognostic factor and potential vulnerability in osteosarcoma[J]. Journal of Bone Oncology, 2024, 44: 100517. 25. Cas9X®基因过表达服务:影响因子为2.7 Li C, Lin X, Su J. HSP90B1 regulates autophagy via PI3K/AKT/mTOR signaling, mediating HNSC biological behaviors[J]. PeerJ, 2024, 12: e17028. 26. 细胞STR鉴定服务:影响因子为2.7 Wang C, Liu P, Sun Y, et al. Prognostic biomarker SYK and its correlation with immune infiltrates in glioma[J]. Experimental and Therapeutic Medicine, 2023, 26(4): 1-11. 27. Cas9X®基因编辑服务:影响因子为11 Li W, Ali T, Zheng C, et al. Anti-depressive-like behaviors of APN KO mice involve Trkb/BDNF signaling related neuroinflammatory changes[J]. Molecular Psychiatry, 2022, 27(2): 1047-1058. 28. 稳定转染过表达 Wang D, Yang S, Zeng Y, et al. TET2 amplifies RIPK3/MLKL necroptosis signal by upregulation of PLK3 to promote UVB-induced skin photodamage[J]. 2023. 29. Cas9X®基因敲除服务 Zhou T, Qian H, Zhang D, et al. Tumor-Derived PGRN Inhibits Cd8+ T Cell Recruitment and Promotes the Progression of Breast Cancer by Up-Regulation of ICAM-1 on TAM[J]. Available at SSRN 4204772. 30. Cas9X®基因敲除服务:影响因子为14.3 Wei Y S, Tang W J, Mao P Y, et al. Sexually Dimorphic Response to Hepatic Injury in Newborn Suffering from Intrauterine Growth Restriction[J]. Advanced Science, 2024: 2403095. 31. Cas9X®慢病毒包装:影响因子为14.3 Li C, Qin T, Zhao J, et al. Kdm6a-CNN1 axis orchestrates epigenetic control of trauma-induced spinal cord microvascular endothelial cell senescence to balance neuroinflammation for improved neurological repair[J]. Bone Research, 2024, 12(1): 32. Cas9X®基因干扰siRNA:影响因子为9.1 Bian Y, Xu S, Gao Z, et al. m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/FOXM1 positive feedback loop[J]. Cancer Letters, 2024: 217004. 33. Cas9X®基因编辑服务:影响因子为5.7 Zhou Z, Hu C, Cui B, et al. Ginsenoside Rg1 Suppresses Pyroptosis via the NF-κB/NLRP3/GSDMD Pathway to Alleviate Chronic Atrophic Gastritis In Vitro and In Vivo[J]. Journal of Agricultural and Food Chemistry, 2024. 34. Cas9X®基因干扰siRNA:影响因子为4.6 Wu Q, Yuan K, Yao Y, et al. LAMC1 attenuates neuronal apoptosis via FAK/PI3K/AKT signaling pathway after subarachnoid hemorrhage[J]. Experimental Neurology, 2024, 376: 114776. 35. 质粒: 影响因子3.8 Li Y, Wang Y, Wu R, et al. HTR2B as a novel biomarker of chronic obstructive pulmonary disease with lung squamous cell carcinoma[J]. Scientific Reports, 2024, 14(1): 13206. 36. Cas9X®基因敲除服务:影响因子为3.8 Cui N, Han X, Yang X, et al. Avian leukosis virus usurps the cellular SERBP1 protein to enhance its transcription and promote productive infections in avian cells[J]. Poultry Science, 2024, 103(6): 103755. 37. Cas9X®载体:影响因子为3.2 Cui Z, Feng Y, Gao Y, et al. Overexpression of YTHDF3 increases the specific productivity of the recombinant protein in CHO cells by promoting the translation process[J]. Biotechnology Journal, 2024, 19(4): 2400078. 38. 质粒:影响因子1.5 Zhou Q, Chen D, Yu J, et al. A novel gain‐of‐function STAT3 variant in infantile‐onset diabetes associated with multiorgan autoimmunity[J]. Molecular Genetics & Genomic Medicine, 2024, 12(2): e2407. 39. Cas9X®基因敲除服务 Zeng F, Heier C, Yu Q, et al. Human transmembrane protein 68 links triacylglycerol synthesis to membrane lipid homeostasis[J]. bioRxiv, 2024: 2024.04. 14.589399. 40. AVV病毒包装 Li X, Wang J, Liao C, et al. The binding of PKCε and MEG2 to STAT3 regulates IL‐6‐mediated microglial hyperalgesia during inflammatory pain[J]. The FASEB Journal, 2024, 38(8): e23590. 41. THP1细胞基因突变:影响因子为14.7 Liang J, Wan Y, Gao J, et al. Erythroid-intrinsic activation of TLR8 impairs erythropoiesis in inherited anemia[J]. Nature Communications, 2024, 15(1): 1-17. 42. CRlSPR-Cas9:影响因子为14.3 Jia S, Liu W, Zhang M, Wang L, Ren C, Feng C, Zhang T, Lv H, Hou Z, Zou W, Zhang Y, Tong W, Wang J, Chen W. Insufficient Mechanical Loading Downregulates Piezo1 in Chondrocytes and Impairs Fracture Healing Through ApoE-Induced Senescence. Adv Sci (Weinh). 2024 Oct 17:e2400502. 43. Cas9X®基因干扰siRNA:影响因子为9.1 Bian Y, Xu S, Gao Z, Ding J, Li C, Cui Z, Sun H, Li J, Pu J, Wang K. m6A modification of lncRNA ABHD11-AS1 promotes colorectal cancer progression and inhibits ferroptosis through TRIM21/IGF2BP2/ FOXM1 positive feedback loop. Cancer Lett. 2024 Aug 1;596:217004. |